27 resultados para Epidermal growth factor receptor

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tyrosine kinase inhibitors (TKIs) targeting the epidermal growth factor receptor (EGFR) are well established in treating metastatic pulmonary adenocarcinoma, especially patients with activating EGFR mutations. EGFR mutations are rare in pulmonary squamous cell carcinomas (SCCs). There are conflicting data supporting the efficacy of EGFR-TKIs in advanced lung SCC. We analyzed the impact of EGFR-TKIs on progression-free survival (PFS) and overall survival (OS) in unselected patients with lung SCC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PMC42-LA cells display an epithelial phenotype: the cells congregate into pavement epithelial sheets in which E-cadherin and beta-catenin are localized at cell-cell borders. They abundantly express cytokeratins, although 5% to 10% of the cells also express the mesenchymal marker vimentin. Stimulation of PMC42-LA cells with epidermal growth factor (EGF) leads to epithelio-mesenchymal transition-like changes including up-regulation of vimentin and down-regulation of E-cadherin. Vimentin expression is seen in virtually all cells, and this increase is abrogated by treatment of cells with an EGF receptor antagonist. The expression of the mesenchyme-associated extracellular matrix molecules fibronectin and chondroitin sulfate proteoglycan also increase in the presence of EGF. PMC42-LA cells adhere rapidly to collagen I, collagen IV, and laminin-1 substrates and markedly more slowly to fibronectin and vitronectin. EGF increases the speed of cell adhesion to most of these extracellular matrix molecules without altering the order of adhesive preference. EGF also caused a time-dependent increase in the motility of PMC42-LA cells, commensurate with the degree of vimentin staining. The increase in motility was at least partly chemokinetic, because it was evident both with and without chemoattractive stimuli. Although E-cadherin staining at cell-cell junctions disappeared in response to EGF, beta-catenin persisted at the cell periphery. Further analysis revealed that N-cadherin was present at the cell-cell junctions of untreated cells and that expression was increased after EGF treatment. N- and E-cadherin are not usually coexpressed in human carcinoma cell lines but can be coexpressed in embryonic tissues, and this may signify an epithelial cell population prone to epithelio-mesenchymal-like responses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Peritoneal dissemination of ovarian carcinoma is mediated by epithelial–mesenchymal interconversions leading to the disruption of cell–cell contact and modulation of cell–extracellular matrix (ECM) interactions. The present study was designed to evaluate the effects of epidermal growth factor (EGF) as a modulator of Janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3) signalling and changes in integrin expression during the process similar to EMT. A fibroblastic morphology with reduced intercellular cell contacts and increased cell motility was observed in ovarian cancer cell lines in response to EGF and was concomitant with the up regulation of EMT-associated N-cadherin and vimentin expression. These changes were accompanied by an increase in α2, α6 and β1 integrin subunits and activation of JAK2 and STAT3 signalling which was suppressed by a specific JAK2 inhibitor. Consistent with the suppression of STAT3 activity, N-cadherin and vimentin expression were abrogated and was coherent with the loss of cell motility and the expression of α6 and β1 integrin subunits. Neutralizing antibodies against α6 and β1 subunits inhibited cancer cell migration. A strong correlation between the expression of N-cadherin, vimentin and JAK2/STAT3 levels were detected in high-grade ovarian tumors and was consistent with the previously reported enhanced expression of α6 integrin subunit in advanced tumors [Ahmed N, Riley C, Oliva K, Rice G, Quinn M. Ascites induces modulation of α6β1 integrin and urokinase plasminogen activator receptor expression and associated functions in ovarian carcinoma. British Journal of Cancer 2005;92:1475–85]. Our data incorporating the clinical samples and the cancer cell lines is the first to demonstrate that JAK2/STAT3 pathway may be one of the downstream events in EMT-like process and α6β1 integrin-mediated signalling in ovarian carcinomas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To identify genes involved in the central regulation of energy balance, we compared hypothalamic mRNA from lean and obese Psammomys obesus, a polygenic model of obesity, using differential display PCR. One mRNA transcript was observed to be elevated in obese, and obese diabetic, P. obesus compared with lean animals and was subsequently found to be increased 4-fold in the hypothalamus of lethal yellow agouti (Ay/a) mice, a murine model of obesity and diabetes. Intracerebroventricular infusion of antisense oligonucleotide targeted to this transcript selectively suppressed its hypothalamic mRNA levels and resulted in loss of body weight in both P. obesus and Sprague Dawley rats. Reductions in body weight were mediated by profoundly reduced food intake without a concomitant reduction in metabolic rate. Yeast two-hybrid screening, and confirmation in mammalian cells by bioluminescence resonance energy transfer analysis, demonstrated that the protein it encodes interacts with endophilins, mediators of synaptic vesicle recycling and receptor endocytosis in the brain. We therefore named this transcript Src homology 3-domain growth factor receptor-bound 2-like (endophilin) interacting protein 1 (SGIP1). SGIP1 encodes a large proline-rich protein that is expressed predominantly in the brain and is highly conserved between species. Together these data suggest that SGIP1 is an important and novel member of the group of neuronal molecules required for the regulation of energy homeostasis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: The disintegrin metalloprotease ADAM-10 is a multidomain metalloprotease that is potentially significant in tumor progression due to its extracellular matrix-degrading properties. Previously, ADAM-10 mRNA was detected in prostate cancer (PCa) cell lines; however, the presence of ADAM-10 protein and its cellular localization, regulation, and role have yet to be described. We hypothesized that ADAM-10 mRNA and protein may be regulated by growth factors such as 5α-dihydrotestosterone, insulin-like growth factor I, and epidermal growth factor, known modulators of PCa cell growth and invasion.

Experimental Design: ADAM-10 expression was analyzed by in situ hybridization and immunohistochemistry in prostate tissues obtained from 23 patients with prostate disease. ADAM-10 regulation was assessed using quantitative reverse transcription-PCR and Western blot analysis in the PCa cell line LNCaP.

Results: ADAM-10 expression was localized to the secretory cells of prostate glands, with additional basal cell expression in benign glands. ADAM-10 protein was predominantly membrane bound in benign glands but showed marked nuclear localization in cancer glands. By Western blot, the 100-kDa proform and the 60-kDa active form of ADAM-10 were synergistically up-regulated in LNCaP cells treated with insulin-like growth factor I plus 5α-dihydrotestosterone. Epidermal growth factor also up-regulated both ADAM-10 mRNA and protein.

Conclusions: This study describes for the first time the expression, regulation, and cellular localization of ADAM-10 protein in PCa. The regulation and membrane localization of ADAM-10 support our hypothesis that ADAM-10 has a role in extracellular matrix maintenance and cell invasion, although the potential role of nuclear ADAM-10 is not yet known.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The performance of biomaterials in a biological environment is largely influenced by the surface properties of the biomaterials. In particular, grafted targeting ligands significantly impact the subsequent cellular interactions. The utilisation of a grafted epidermal growth factor (EGF) is effective for targeted delivery of drugs to tumours, but the amount of these biological attachments cannot be easily quantified as most characterization methods could not detect the extremely low amount of EGF ligands grafted on the surface of nanoparticles. In this study, hollow mesoporous silica nanoparticles (HMSNs) were functionalized with amine groups to conjugate with EGFs via carbodiimide chemistry. Time of flight secondary ion mass spectrometry (ToF-SIMS), a very surface specific technique (penetration depth <1.5 nm), was employed to study the binding efficiency of the EGF to the nanoparticles. Principal component analysis (PCA) was implemented to track the relative surface concentrations of EGFs on HMSNs. It was found that ToF-SIMS combined with the PCA technique is an effective method to evaluate the immobilization efficiency of EGFs. Based on this useful technique, the quantity and density of the EGF attachments that grafted on nanoparticles can be effectively controlled by varying the EGF concentration at grafting stages. Cell experiments demonstrated that the targeting performance of EGFR positive cells was affected by the number of EGFs attached on HMSNs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Granulocyte colony-stimulating factor (G-CSF) is the major regulator of granulopoiesis and acts through binding to its specific receptor (G-CSF-R) on neutrophilic granulocytes. Previous studies of signaling from the 4 G-CSF-R cytoplasmic tyrosine residues used model cell lines that may have idiosyncratic, nonphysiological responses. This study aimed to identify specific signals transmitted by the receptor tyrosine residues in primary myeloid cells. To bypass the presence of endogenous G-CSF-R, a chimeric receptor containing the extracellular domain of the epidermal growth factor receptor in place of the entire extracellular domain of the G-CSF-R was used. A series of chimeric receptors containing tyrosine mutations to phenylalanine, either individually or collectively, was constructed and expressed in primary bone marrow cells from G-CSF-deficient mice. Proliferation and differentiation responses of receptor-expressing bone marrow cells stimulated by epidermal growth factor were measured. An increased 50% effective concentration to stimulus of the receptor Ynull mutant indicated that specific signals from tyrosine residues were required for cell proliferation, particularly at low concentrations of stimulus. Impaired responses by mutant receptors implicated G-CSF-R Y764 in cell proliferation and Y729 in granulocyte differentiation signaling. In addition, different sensitivities to ligand stimulation between mutant receptors indicated that G-CSF-R Y744 and possibly Y729 have an inhibitory role in cell proliferation. STAT activation was not affected by tyrosine mutations, whereas ERK activation appeared to depend, at least in part, on Y764. These observations have suggested novel roles for the G-CSF-R tyrosine residues in primary cells that were not observed previously in studies in cell lines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Knowledge of estrogen receptor (ER), progesterone receptor (PgR) and human epidermal growth factor receptor-2 (HER2) status is necessary for determining the optimal treatment of breast cancer patients. At the same time, the discordance between marker profiles (ER/PR and HER2) of primary and metastatic breast cancer is well documented. Whether discordant cases are secondary to “clonal selection” in the face of targeted anti-estrogen or anti-HER2 therapy or whether they are a laboratory artifact is still debated; both scenarios are likely. This article outlines current modalities for ER, PR, and HER2 testing in primary breast carcinoma and its metastases and reviews prospective and retrospective studies that have addressed these issues, as well as recent advances in the field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

 This research investigated the anti-cancer effects of milk protein, lactoferrin. It was found that lactoferrin specifically induced cell death in breast cancer cells and was non-toxic to normal mammary gland cells. Key molecular mechanisms targeted by lactoferrin were elucidated in this study which provides important insight into the activity of this protein as an anti-cancer agent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study used the Eri silk nanoparticles (NPs) for delivering apo-bovine lactoferrin (Apo-bLf) (~2% iron saturated) and Fe-bLf (100% iron saturated) in MDA-MB-231 and MCF-7 breast cancer cell lines. Apo-bLf and Fe-bLf-loaded Eri silk NPs with sizes between 200 and 300 nm (±10 nm) showed a significant internalization within 4 hours in MDA-MB-231 cells when compared to MCF-7 cells. The ex vivo loop assay with chitosan-coated Fe-bLf-loaded silk NPs was able to substantiate its future use in oral administration and showed the maximum absorption within 24 hours by ileum. Both Apo-bLf and Fe-bLf induced increase in expression of low-density lipoprotein receptor-related protein 1 and lactoferrin receptor in epidermal growth factor (EGFR)-positive MDA-MB-231 cells, while transferrin receptor (TfR) and TfR2 in MCF-7 cells facilitated the receptor-mediated endocytosis of NPs. Controlled and sustained release of both bLf from silk NPs was shown to induce more cancer-specific cytotoxicity in MDA-MB-231 and MCF-7 cells compared to normal MCF-10A cells. Due to higher degree of internalization, the extent of cytotoxicity and apoptosis was significantly higher in MDA-MB-231 (EGFR+) cells when compared to MCF-7 (EGFR-) cells. The expression of a prominent anticancer target, survivin, was found to be downregulated at both gene and protein levels. Taken together, all the observations suggest the potential use of Eri silk NPs as a delivery vehicle for an anti-cancer milk protein, and indicate bLf for the treatment of breast cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BackgroundGrowth of hormone-receptor–positive breast cancer is dependent on cyclin-dependent kinases 4 and 6 (CDK4 and CDK6), which promote progression from the G1 phase to the S phase of the cell cycle. We assessed the efficacy of palbociclib (an inhibitor of CDK4 and CDK6) and fulvestrant in advanced breast cancer.MethodsThis phase 3 study involved 521 patients with advanced hormone-receptor–positive, human epidermal growth factor receptor 2–negative breast cancer that had relapsed or progressed during prior endocrine therapy. We randomly assigned patients in a 2:1 ratio to receive palbociclib and fulvestrant or placebo and fulvestrant. Premenopausal or perimenopausal women also received goserelin. The primary end point was investigator-assessed progression-free survival. Secondary end points included overall survival, objective response, rate of clinical benefit, patient-reported outcomes, and safety. A preplanned interim analysis was performed by an independent data and safety monitoring committee after 195 events of disease progression or death had occurred.ResultsThe median progression-free survival was 9.2 months (95% confidence interval [CI], 7.5 to not estimable) with palbociclib–fulvestrant and 3.8 months (95% CI, 3.5 to 5.5) with placebo–fulvestrant (hazard ratio for disease progression or death, 0.42; 95% CI, 0.32 to 0.56; P<0.001). The most common grade 3 or 4 adverse events in the palbociclib–fulvestrant group were neutropenia (62.0%, vs. 0.6% in the placebo–fulvestrant group), leukopenia (25.2% vs. 0.6%), anemia (2.6% vs. 1.7%), thrombocytopenia (2.3% vs. 0%), and fatigue (2.0% vs. 1.2%). Febrile neutropenia was reported in 0.6% of palbociclib-treated patients and 0.6% of placebo-treated patients. The rate of discontinuation due to adverse events was 2.6% with palbociclib and 1.7% with placebo.ConclusionsAmong patients with hormone-receptor–positive metastatic breast cancer who had progression of disease during prior endocrine therapy, palbociclib combined with fulvestrant resulted in longer progression-free survival than fulvestrant alone. (Funded by Pfizer; PALOMA3 ClinicalTrials.gov number, NCT01942135.)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective
To investigate tenocyte regulatory events during the development of overuse supraspinatus tendinosis in rats.

Methods
Supraspinatus tendinosis was induced by running rats downhill at 1 km/hour for 1 hour a day. Tendons were harvested at 4, 8, 12, and 16 weeks and processed for brightfield, polarized light, or transmission electron microscopy. The development of tendinosis was assessed semiquantitatively using a modified Bonar histopathologic scale. Apoptosis and proliferation were examined using antibodies against fragmented DNA or proliferating cell nuclear antigen, respectively. Insulin-like growth factor 1 (IGF-1) expression was determined by computer-assisted quantification of immunohistochemical reaction. Local IGF-1 signaling was probed using antibodies to phosphorylated insulin receptor substrate 1 (IRS-1) and ERK-1/2.

Results
Tendinosis was present after 12 weeks of downhill running and was characterized by tenocyte rounding and proliferation as well as by glycosaminoglycan accumulation and collagen fragmentation. The proliferation index was elevated in CD90+ tenocytes in association with tendinosis and correlated with increased local IGF-1 expression by tenocytes and phosphorylation of IRS-1 and ERK-1/2. Both apoptosis and cellular inflammation were absent at all time points.

Conclusion
In this animal model, early tendinosis was associated with local stimulation of tenocytes rather than with extrinsic inflammation or apoptosis. Our data suggest a role for IGF-1 in the load-induced tenocyte responses during the pathogenesis of overuse tendon disorders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Granulocyte colony-stimulating factor (G-CSF) is the major regulator of neutrophil production. Studies in cell lines have established that conserved tyrosines Y704, Y729, Y744, Y764 within the cytoplasmic domain of G-CSF receptor (G-CSF-R) contribute significantly to G-CSF-induced proliferation, differentiation and cell survival. However, it is unclear whether these tyrosines are equally important under more physiological conditions. Here, we investigated how individual G-CSF-R tyrosines affect G-CSF responses of primary myeloid progenitors. We generated GCSF- R deficient mice and transduced their bone marrow cells with tyrosine "null" mutant (mO), single tyrosine "add back" mutants or wild type (WT) receptors. G-CSFinduced responses were determined in primary colony assays, serial replatings and suspension cultures. We show that removal of all tyrosines had no major influence on primary colony growth. However, adding back Y764 strongly enhanced proliferativeresponses, which was reverted by inhibition of ERK activitity. Y729, which we found to be associated with the suppressor of cytokine signaling, SOCS3, had a negative effect on colony formation. After repetitive replatings, the clonogenic capacities of cells expressing mO gradually dropped compared to WT. The presence of Y729, but also Y704 and Y744, both involved in activation of STAT3, further reduced replating
efficiencies. Conversely, Y764 greatly elevated the clonogenic abilities of myeloid progenitors, resulting in a >104–fold increase of colony forming cells over mO after the fifth replating. These findings suggest that tyrosines in the cytoplasmic domain of G-CSF-R, although dispensable for G-CSF-induced colony growth, recruit signaling mechanisms that regulate the maintenance and outgrowth of myeloid progenitor cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background:  The Kimba mouse carries a human vascular endothelial growth factor transgene causing retinal neovascularisation similar to that seen in diabetic retinopathy. Here, we examine the relationship between differential gene expression induced by vascular endothelial growth factor overexpression and the architectural changes that occur in the retinae of these mice.

Methods:  Retinal gene expression changes in juvenile and adult Kimba mice were assayed by microarray and compared with age-matched wild-type littermates. Transcription of selected genes was validated by quantitative real-time polymerase chain reaction. Protein translation was determined using immunohistochemistry and enzyme-linked immunosorbent assay.

Results:  Semaphorin 3C was upregulated, and nuclear receptor subfamily 2, group 3, member 3 (Nr2e3) was downregulated in juvenile Kimba mice. Betacellulin and endothelin 2 were upregulated in adults. Semaphorin 3C colocalized with glial fibrillary acidic protein in Müller cells of Kimba retinae at greater signal intensities than in wild type. Endothelin 2 colocalised to Müller cell end feet and extended into the outer limiting membrane. Endothelin receptor type B staining was most pronounced in the inner nuclear layer, the region containing Müller cell somata.

Conclusions:  An early spike in vascular endothelial growth factor induced significant long-term retinal neovascularisation associated with changes to the retinal ganglion, photoreceptor and Müller cells. Overexpression of vascular endothelial growth factor led to dysregulation of photoreceptor metabolism through differential expression of Nr2e3, endothelin 2, betacellulin and semaphorin 3C. Alterations in the expression of these genes may therefore play key roles in the pathological mechanisms that result from retinal neovascularisation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ovarian cancer remains a major cause of cancer mortality in women, with only limited understanding of disease aetiology at the molecular level. Granulocyte colony-stimulating factor (G-CSF) is a key regulator of both normal and emergency haematopoiesis, and is used clinically to aid haematopoietic recovery following ablative therapies for a variety of solid tumours including ovarian cancer.